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(57) ABSTRACT

A deep tensor neural network (DTNN) is described herein,
wherein the DTNN is suitable for employment in a computer-
implemented recognition/classification system. Hidden lay-
ers inthe DTNN comprise at least one projection layer, which
includes a first subspace of hidden units and a second sub-
space of hidden units. The first subspace of hidden units
receives a first nonlinear projection of input data to a projec-
tion layer and generates the first set of output data based at
least in part thereon, and the second subspace of hidden units
receives a second nonlinear projection of the input data to the
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based at least in part thereon. A tensor layer, which can
converted into a conventional layer of a DNN, generates the
third set of output data based upon the first set of output data
and the second set of output data.
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1
COMPUTER-IMPLEMENTED DEEP TENSOR
NEURAL NETWORK

BACKGROUND

Many different types of computer-implemented recogni-
tion systems exist, wherein such recognition systems are con-
figured to perform some form of classification with respect to
input data. For example, computer-implemented speech rec-
ognition systems are configured to receive spoken utterances
of a user and recognize words in the spoken utterances. In
another example, handwriting recognition systems have been
developed to receive a handwriting sample and identify, for
instance, an author of the handwriting sample, individual
letters in the handwriting sample, words in the handwriting
sample, etc. In still yet another example, computer-imple-
mented recognition systems have been developed to perform
facial recognition, fingerprint recognition, and the like.

In many of these recognition systems, a respective recog-
nition system is trained to recognize a relatively small number
of potential labels. For instance, many speech recognition
systems are trained to recognize words in a relatively small
vocabulary (e.g., on the order of hundreds of words). Many
conventional speech recognition systems that are configured
to recognize words in a large vocabulary (on the order of
thousands or tens of thousands of words) consume a signifi-
cant amount of computer-readable memory, and additionally
tend to require personalized training to accurately recognize
words in spoken utterances. For many applications, however,
it is impractical to obtain requisite training data to cause
recognitions output by the recognition system to be suffi-
ciently accurate. For instance, in a call-center scenario where
words in a relatively large vocabulary are desirably recog-
nized, it is impractical to train a speech recognition model for
each individual customer, and is further impractical to ask
each customer to devote several minutes to help train the
speech recognition system.

Recently, deep neural networks have been studied as a
potential technology that can robustly perform speech recog-
nition without requiring a large amount of individualized
training data. A deep neural network (DNN) is a deterministic
model that includes an observed data layer and a plurality of
hidden layers, stacked one on top of another. Each hidden
layer includes a plurality of hidden units (neurons), which are
coupled to other hidden units or an output label by way of
weighted synapses. The output of a DNN is a probability
distribution over potential labels corresponding to the input
data. While DNNs have shown great promise in performing
recognition tasks, improved robustness with respect to dis-
tortion, speaker identity, accent, and the like, is desired.

SUMMARY

The following is a brief summary of subject matter that is
described in greater detail herein. This summary is not
intended to be limiting as to the scope of the claims.

Described herein are various technologies pertaining to
computer-implemented recognition systems. With more par-
ticularity, described herein are various technologies pertain-
ing to deep tensor neural networks (DTNNs), which can be
employed in various types of computer-implemented recog-
nition systems, including but not limited to automatic speech
recognition (ASR) systems, handwriting recognition sys-
tems, object character recognition (OCR) systems, facial rec-
ognition systems, fingerprint recognition systems, amongst
others. A DTNN, as the term is used herein, is a deep neural
network (DNN) that comprises a plurality of hidden layers,
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2

wherein the plurality of hidden layers comprise at least one
projection layer and at least one tensor layer. A projection
layer comprises multiple, potentially nonlinear projections of
input data from another layer (another hidden layer or an
observed data layer) that is (conceptually) beneath the pro-
jection layer in the DTNN. Specifically, the projection layer
comprises at least two subspaces of hidden units, which
receive respective projections of received input data from the
another layer, and wherein such respective projections, in an
exemplary embodiment, are nonlinear. The projections are
generated via respective weighted matrices and mathematical
functions (potentially nonlinear) at respective synapses that
couple the projection layer with the another layer. In an exem-
plary embodiment, a nonlinear function can be the sigmoid
function. In summary, then, the projection layer of the DTNN
comprises at least two subspaces of hidden units, wherein the
subspaces receive respective, potentially nonlinear, projec-
tions of input data received from an adjacent layer in the
DTNN.

The tensor layer of the DTNN comprises a mathematical
operation that effectively combines the projections in the
projection layer and maps the resulting combination to a next
adjacent layer in the DTNN, wherein such next adjacent layer
can be another hidden layer (including a projection layer) or
an output label layer. Thus, the tensor layer combines the
projections in the subspaces to generate an output vector,
which is subsequently provided to the adjacent layer in the
DTNN. In an exemplary embodiment, the tensor layer can
comprise a weight tensor. In another exemplary embodiment,
the tensor layer can comprise a weight matrix that is formed
to represent a tensor, thereby allowing tensor layers in the
DTNN to be converted into conventional matrix layers with-
out modifying an interface that describes the two different
types of layers. More specifically, by causing a tensor to be
represented as a matrix, weights of such matrix can be learned
using conventional back-propagation techniques.

In another exemplary embodiment, a DTNN can comprise
a plurality of projection layers and a respective plurality of
tensor layers, wherein a number of projection layers is
equivalent to a number of tensor layers. It is thus to be under-
stood that any hidden layer in a deep neural network can be
replaced by a combination of a projection layer and a tensor
layer.

Other aspects will be appreciated upon reading and under-
standing the attached figures and description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of an exemplary
recognition system that comprises a deep tensor neural net-
work (DTNN).

FIG. 2 is a graphical representation of a conventional deep
neural network (DNN).

FIG. 3 is an exemplary graphical representation of a
DTNN, wherein the DTNN comprises a projection layer and
a tensor layer.

FIG. 4 is an exemplary graphical representation of a
DTNN, wherein a tensor layer includes a weight matrix.

FIG. 5is an exemplary graphical representation ofa DTNN
that comprises a plurality of projection layers and a corre-
sponding plurality of tensor layers.

FIG. 6 is an alternative representation of the DTNN shown
in FIG. 5.

FIG. 7 is a graphical representation of an exemplary
DTNN, wherein a projection layer therein comprises linear
projections of input data.



US 9,292,787 B2

3

FIG. 8 is an alternative representation of the DTNN shown
in FIG. 7.

FIG. 9 illustrates an exemplary representation of a quasi-
DTNN.

FIG. 10 is a flow diagram that illustrates an exemplary
methodology for assigning a label to an input sample.

FIG. 11 is an exemplary flow diagram that illustrates an
exemplary methodology for projecting an input vector into
two subspaces in a DTNN and subsequently generating an
output vector at a tensor layer in the DTNN based upon
content of the subspaces.

FIG. 12 is an exemplary computing system.

DETAILED DESCRIPTION

Various technologies pertaining to computer-implemented
recognition systems in general, and deep tensor neural net-
works (DTNNs) in particular, will now be described with
reference to the drawings, where like reference numerals
represent like elements throughout. In addition, several func-
tional block diagrams of exemplary systems are illustrated
and described herein for purposes of explanation; however, it
is to be understood that functionality that is described as being
carried out by certain system components may be performed
by multiple components. Similarly, for instance, a component
may be configured to perform functionality that is described
as being carried out by multiple components. Additionally, as
used herein, the term “exemplary” is intended to mean serv-
ing as an illustration or example of something, and is not
intended to indicate a preference.

As used herein, the terms “component” and “system” are
intended to encompass computer-readable data storage thatis
configured with computer-executable instructions that cause
certain functionality to be performed when executed by a
processor. The computer-executable instructions may include
a routine, a function, or the like. The terms “component™ and
“system” are also intended to encompass hardware-only
embodiments, such as a field-programmable gate array or
portion thereof that is configured to perform certain function-
ality. Moreover, the terms “component” and “system” are
intended to encompass system on chip (SoC) and cluster on
chip (CoC) implementations of hardware that is configured to
perform certain functionality. It is also to be understood that
acomponent or system may be localized on a single device or
distributed across several devices.

With reference now to FIG. 1, an exemplary system 100
that facilitates assigning a label to a sample set forth by a user
is illustrated. In an exemplary embodiment, the system 100
can be a computer-implemented recognition system that is
configured to perform a recognition/classification task with
respect to received input samples. Accordingly, the system
100 can be configured to perform automatic speech recogni-
tion (ASR), facial recognition, object character recognition
(OCR), handwriting recognition, fingerprint recognition, or
other suitable recognition/classification task. Additionally,
the system 100 can be configured to execute on a client
computing device, can be configured to execute on a server, or
can be configured to execute in a distributed manner across a
client computing device and a server. Therefore, for example,
the system 100 may be comprised by a mobile computing
device, such as amobiletelephone, a tablet computing device,
or the like.

The system 100 comprises a receiver component 102 that
receives a sample from a user. The sample may be a spoken
utterance, a document with handwriting therein, an image of
a fingerprint, an image of a face, etc. The system 100 addi-
tionally comprises a recognizer component 104 that is in
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communication with the receiver component 102 and assigns
at least one label to the sample received by the receiver
component 102. For instance, the label can be indicative of a
word recognized in a spoken utterance of the user. Therefore,
for instance, the label can be a phone, a senone, or a word.
Similarly, the label can be an identification of a letter or word
in a handwriting sample, an identification of at least a partial
match for fingerprint analysis, etc.

The recognizer component 104 assigns the label to the
sample through utilization of a deep tensor neural network
(DTNN) 106. As will be described in greater detail below, the
DTNN 106 is a deep neural network (DNN), wherein at least
one hidden layer therein is replaced by a combination of a
projection layer and a tensor. With more specificity, the
DTNN 106 comprises a plurality of hidden layers. For
instance, the deep tensor neural network 106 can have
between 1 hidden layer and 100 hidden layers, with a typical
number of hidden layers between 5 and 9 for tasks such as
speech recognition. Each hidden layer can have between 100
to 100,000 hidden units. As will be understood by one skilled
in the art, DNNs include an observed data layer, a plurality of
hidden layers, and a layer that includes potential labels. Con-
ceptually, a DNN is a stacked network, wherein layers therein
are stacked one on top of another. Furthermore, data travels
unidirectionally through hidden layers in a DNN, such that a
hidden layer in the DNN receives input data from an imme-
diately adjacent layer in the DNN and outputs data to another
immediately adjacent layer in the DNN. Therefore, for any
hidden layer in a DNN, such hidden layer receives input data
from one (and only one) adjacent layer (another hidden layer
orthe observed data layer) and outputs output data to one (and
only one) other layer in the DNN. An exemplary representa-
tion of a structure of a DNN is shown in FIG. 2, and will be
described below.

As mentioned above, the DTNN 106 comprises a plurality
of'hidden layers, wherein at least one of such hidden layers is
a projection layer 108. The projection layer 108 comprises
multiple subspaces, wherein each subspace comprises a
respective plurality of hidden units, and wherein each hidden
unit comprises a respective activation function. A hidden unit
receives input data (by way of one or more weighted synapses
from an adjacent hidden layer in the DTNN), executes its
respective activation function over the input data, and gener-
ates output data based upon the execution of the respective
activation function over the input data. The projection layer
108 receives input data from an adjacent layer, and generates
multiple, potentially nonlinear projections of the input data
for provision to the aforementioned subspaces. In an exem-
plary embodiment, a sigmoid function can be executed over
respective projections of input data. Additionally, respective
weight matrices with learned weights therein can be
employed in connection with further modifying a projection
prior to being provided to respective subspaces. For purposes
of explanation, a projection layer as described herein com-
prises two subspaces that receive two respective projections;
it is to be understood, however, that a projection layer can
include more than two subspaces that receive respective,
potentially nonlinear, projections of input data.

As can be ascertained, each subspace in the projection
layer 108 generates output data, as hidden units therein
execute activation functions over data received thereby. The
recognizer component 104 additionally comprises a tensor
layer 110, wherein the tensor layer 110 is immediately adja-
cent to the projection layer 108 in the DTNN 106. Generally,
the tensor layer 110 receives respective output data from each
subspace of hidden units in the projection layer 108 and
combines the respective output data to generate vector output
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data that is mapped to another layer (e.g., another hidden
layer)inthe DTNN 106. For example, a layer that receives the
vector output data from the tensor layer 110 may be another
hidden layer, such as a projection layer, which will be shown
below.

In the context of speech recognition, inclusion of projec-
tion layers and tensor layers in DNNs can be employed to
factorize parameters of speech that can affect speech recog-
nition, such as an identity of a speaker, distortion (back-
ground noise and channel distortion), and the like, wherein
such parameters can be represented as interactions between
subspaces of hidden units. Therefore, subspaces of hidden
units in the projection layer 108 can be employed to represent
hidden underlying factors that affect speech recognition. Fur-
thermore, it is to be understood that the DTNN 106 can
comprise a plurality of projection layers as well as a plurality
of tensor layers, wherein the number of projection layers and
the number of tensor layers in the DTNN 106 are equivalent.

Now turning to FIG. 2, a graphical representation of an
exemplary conventional DNN 200 is illustrated. The DNN
200 comprises an observed data layer 202, which captures an
input sample in the form of a vector V. The input is denoted
in FIG. 2 by X, which is an Ix1 vector. The DNN further
comprises a plurality of hidden layers 204-208. Each of the
hidden layers 204-208 comprises a respective plurality of
hidden units, and wherein each hidden unit comprises a
respective activation function. Hidden units in adjacent layers
are potentially connected by way of weighted synapses,
which can be collectively be represented by weight matrices
210 and 212 between hidden layers. As shown, the weight
matrix 210 represents weighted synapses between hidden
units in the hidden layer 204 (hidden layer H*~2) and hidden
units in the hidden layer 206 (hidden layer H*~!). Similarly,
the weight matrix 212 represents weighted synapses between
hidden units in the hidden layer 206 and hidden units in the
hidden layer 208 (hidden layer H-). A layer 214 in the DNN
200 is the output, which is determined based upon the
weighted synapses and activation functions of hidden units in
the DNN 200. The output is denoted in FIG. 2 as Y.

With reference now to FIG. 3, a graphical representation of
a DTNN 300 is illustrated. The DTNN 300 comprises the
observed data layer 202, hidden layer 204, hidden layer 208,
and the output layer 214. In the DTNN 300, a projection layer
302 and a tensor layer 303, replace the hidden layer 206.
Specifically, the hidden layer 206 is separated into two sub-
spaces 304 (subspace H,“™!) and 306 (subspace H,“™%),
wherein the subspace 304 is a K,"~'x1 vector of hidden units
and the subspace 306 is a K,”~'x1 vector of hidden units. The
input data (data output by hidden units in the hidden layer
204) is projected to the subspaces 304 and 306, potentially
nonlinearly, by respective sets of weighted synapses, which
are represented by weight matrices 308 (W ! ) and 310
(W,E1), respectively. The weight matrices 308 and 310 can
represent weights of synapses between hidden units in the
hidden layer 204 and respective hidden units in the subspaces
304 and 306, as well as respective mathematical operations
that are to be undertaken over the input data (data output by
the hidden units in the hidden layer 204).

In the exemplary DTNN 300, the tensor layer 303 com-
prises a weight tensor 312 that, generally, combines output of
the subspaces 304 and 306 of hidden units to generate an
output vector, which is received by the hidden layer 208. As
shown, the tensor 312 is denoted by v’ of dimension K" 'x
K, 'xK’ according to the following algorithm:
ey
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where1,j k are indexes of the hidden units in layers h, ", h,’™*
and 1/, respectively, a’ is the bias, and o(x)=1/(1+exp(-x)) is
the sigmoid function applied element-wise.

With reference now to FIG. 4, an alternate representation of
the DTNN 300 is shown. The output v, (shown as 402 in FI1G.
4) of the projection layer 302 can be defined as follows:

=veo(l ' & by ymvea(i D, @
where ® is Kronecker product and vec(:) is the column-
vectorized representation of the matrix. When the output v, is
represented in this form, the tensor 312 can be organized and
rewritten into the weight matrix 212 (w’). In other words, the
following can be obtained:

3

Such rewriting allows tensors in tensor layers to be converted
into weight matrices, and further allows an interface to be
defined that describes such two different types of layers. For
example, in FIG. 4, the hidden layer 208 can be considered as
a conventional layer, such as shown in FIG. 2, and weights of
the weight matrix 212 can be learned using the conventional
back-propagation algorithm. Additionally, such rewriting
also indicates that the tensor layer 303 can be considered a
conventional layer, whose input comprises first and second
order statistics of the values passed from the previous layer.
The projection layer 302, which comprises the first subspace
304 and the second subspace 306, however, remains, wherein
the first subspace 304 and the second subspace 306 are deter-
mined based upon the separate weight matrices 308 and 310.
While the DTNN 300 is shown in both FIG. 3 and FIG. 4 as
including a single projection layer, it is to be understood that
a DTNN can include several projection layers.

Now referring to FIG. 5, an exemplary DTNN 500 that
includes a plurality of hidden layers is illustrated, wherein
each hidden layer is either a projection layer or a tensor layer.
The DTNN 500 includes the observed data layer 202 and the
output layer 214. The DTNN 500 comprises a projection
layer 1-2, which comprises subspaces 502 (h,”?) and 504
(h,"?), a projection layer 1-1 that comprises subspaces 506
(h,"*)and 508 (h,"*), and a projection layer | that comprises
subspaces 510 (h,%) and 512 (h,"), wherein 1 is an exemplary
layer index. The DTNN 500 additionally comprises a tensor
layer 1-1 that comprises tensors 514 (u,” ") and 516 (u,” ), a
tensor layer / that comprises tensors 518 (u,’) and 520 (u,),
and so on.

The outputs of the hidden units in the subspace 502 and the
outputs of the hidden units in the subspace 504 are received at
both of the tensors 514 and 516. The tensor 514 combines
such outputs and generates a first output vector, which is
provided to hidden units in the subspace 506. Similarly, the
tensor 516 combines such outputs and generates a second
output vector, which is provided to hidden units in the sub-
space 508. Likewise, the outputs of the hidden units in the
subspace 506 and the outputs of the hidden units in the sub-
space 508 are received at both of the tensors 518 and 520. The
tensor 518 combines such outputs and generates a third out-
put vector, which is provided to hidden units in the subspace
510. Similarly, the tensor 520 combines such outputs and
generates a fourth output vector, which is provided to hidden
units in the subspace 512. It is to be noted that weights and/or
mathematical operations corresponding to each of the tensors
514-520 can be different; therefore, although, for instance,
the tensor 514 and the tensor 516 receive equivalent inputs,
their respective outputs are non-identical.

It can be noted in the DTNN 500 that the input v, to each
projection layer is projected onto two potentially nonlinear
subspaces h,’ and h,’. The first and second order statistics of

Py =0 +a )
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such projections can then be combined as the input feature to
the adjacent higher layer as quantified by Eq. (2).

With reference now to FIG. 6, an alternative representation
of the DTNN 500 is shown, Here, the output v'~* of hidden
layer h*-2 is defined as follows:

vi-t=vec(h, 2@ b, 2)=vec(h, 2k, 2)").

*
This is shown collectively as reference numerals 602, 604,
and 606 in FIG. 6. With such definition, the tensors 514 and
516 can be rewritten as weight matrices 608 (w,”") and 610
(w,'1), respectively. Likewise, the tensors 518 and 520 can
berewritten as matrices 612 (w,*) and 614 (w,’), respectively.
Therefore, the DTNN 500 as shown in FIG. 6 can be repre-
sented using two types of hidden layers; a conventional sig-
moid layer and a projection layer. Each of these hidden layer
types can be flexibly placed in a DTNN. For classification
tasks, a softmax layer that connects a final hidden layer to
labels can be used in the DTNN 500 similar as to how it would
be employed in a conventional DNN.

Table 1, shown below, summarizes forward computations
involved in a DTNN;, where the input is always converted and
written as v, a K ’x1 column vector, w’ is the weight matrix,
a’ is the bias, Wyl is a column vector of the weight matrix w’,
and

=)Vl

®

is the activation vector given the input v,.

TABLE 1

FORWARD COMPUTATIONS IN DTNNs.

Condition Input v
first layer vi=vy0=x
h'~!: normal layer vi=nit

h*L: projection layer vi=vec(h,"'@h,™)

Condition Output h*

b = o(Z/(V))) = o((WH) TV + &)
hy' = oz, (V) = o((wHV +ar))

normal layer
projection layer, i € {1,2}

softmax layer exp((w§ )TVL n aﬁ)

Wy —— Y
PV Zy exp((w’y“/)TVL +a§/)

It can be noted that, for a projection layer, the output has
two portions:

=0z /0N =o((w)V+a)),

(6
where i € {1,2} indicates the portion number. Two hidden
layer vectors h,”"* and h,”! may be augmented with value I’s
when generating the input v, of the next layer. This, however,
may be unnecessary, since the same affect may be achieved by
setting weights to 0 and biases to a large positive number for
one of the units so that it always outputs 1.

With reference now collectively to FIGS. 7-9, exemplary
variants of a DTNN architecture are illustrated. With refer-
ence solely to FIG. 7, an exemplary variant 700 of the deep
tensor neural network in which linear activations 702 (z,"*)
and 704 (z," 1) (e.g., which include no sigmoid nonlinearity),
are directly connected to the hidden layer 208 through the
tensor 312.

FIG. 8 illustrates an architecturally equivalent representa-
tion of the DTNN 700 shown in FIG. 7, where the weighted
tensor 312 is converted into the weight matrix 312 by defining

V=veo(zy &2, =veelz, e, ),
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shown as a hidden layer 802. It can be noted that the sole
difference between the architectures shown in FIG. 7 and
FIG. 8, and those shown in FIG. 3 and FIG. 4, respectively, is
that the latter includes sigmoid nonlinearity before connect-
ing to the next layer. This provides numerical stability and
also incorporates the former as a special case if restricting the
sigmoid function to the linear range.

FIG. 9 shows another variant 900 of the DTNN 300, in
which linear projection layers are also used but v/ is redefined
as

Vi=pl=o(vec(z,"! ® 2,7, (8)
which is shown as layer 902.

A difference between this model and that illustrated in FIG.
3 and FIG. 4 is that the sigmoid nonlinearity is applied after
the Kronecker product, instead of to the two individual parts
of'the projection layers. The architecture of FIG. 9, while also
modeling the relations between two subspaces in their upper
layer, is not strictly a DTNN, since it cannot be rewritten and
represented using a tensor. Therefore, the architecture shown
in FIG. 9 can be referred to as a quasi-DTNN.

Exemplary techniques for learning parameters (e.g.,
parameters associated with weight tensors and weight matri-
ces) of a DTNN are now described. In an exemplary embodi-
ment, DTNN parameters can be optimized by maximizing the
Cross entry

D=Z p(ylx)log p(ylx) ()]
commonly used for conventional DNNs, where p(yIx) is a
target distribution that is typically an empirical distribution
observed from a training data set. The parameters can be
learned, for instance, using the backpropagation algorithm.

The gradients associated with the softmax layer and the
conventional sigmoid layers are similar to those in the con-
ventional DNNs. Specifically, for the softmax layer these
gradients are computed by:

T (10)

. (1D

where w” is the K, “xC weighted matrix, a” is the Cx1 bias
column vector, and e* (x) is a Cx1 error column vector with

e )=(pr=ilx)-pyr=il)), (12
where p(y=ilx) is the empirical probability and p (y=ilx) is a
model predicted probability. For other layer with 1<L, the
error signal can be defined as

f aD
e'(x) = e

In the softmax layer, the error can be propagated to the
immediately previous layer according to the following:

eL’l(x) = :T[Z = WLeL(x).

a3

Similarly, for the conventional sigmoid layer, the following
gradients can be obtained:
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aD 14
7o = Y (diagle’ @ 0)e ) a

W
9 _ diag(c” (' (v))e! (x), 4
dat
and
) = % = wdiag(o” & (V))e! (x), o

where 0'(x)=0(x)(1-0(x)) is the gradient of the sigmoid func-
tion applied element-wise, and diag(.) is the diagonal matrix
determined by the operant.

The gradients, however, as well as their derivations can be
more complicated for projection layers, which are derived as
shown below. It can be noted that for a projection layer, the
following is obtained:

vl = vec(hll (hlz)T) an
= (h’2 ® g )vec(hll )= (h’z ®ly )h’l
T
= (1gg @ rec((hh)") = (1,4 @1} 1
where 1, is a KxK identity matrix. v/*/ is thus a (I{,’xK,")x1
i 1 1

column vector whose e.:lemer.lts are Vg, 0o @4
where matrix and vector index is assumed to be O-based. This
leads to the following gradients:

T 18
ooty ooy ) o
oW oK =02) @l
whose (i,j+k'K,)-th element is B(i:j)hz,kl, and
T 1
R U Y o 1
e an =l @)
whose (i,j+k'K,)-th element is 8(i=k)h, JZ.
It can be noted that for the portions i€ {1,2},
B 4 o dineior sl 0
Bvectnd) " V' @ diag(o”’ (z;(v))),
amhy" QD
( ,) = diag(c” (Z (),
da;
and
0T 22)
3]
avt
By defining
@f(x) = B_hf

the following is obtained:
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; oD k' aD 23)
elx) = T RETET
More specifically,
e o) ® Lg)e ()= [€'0)]x iy, and 24
&)=, ® (1,)7)e @)=, )0, 25)

where [¢/ (x)] KIZ_ KZZ reshapes ¢’ (x) to a K,’xK,” matrix. The
gradients needed for the backpropagation algorithm in the
projection layers are thus as follows:

aD

] (26)
avec(n)) Ixt k1

awt

BD[

[ oW oD
- Avec(wh) d KLkt

= [V @ diag(e” (G (MW 41
= Vi(diagle’ G el

dD _ ontaD @n

IR PN
9d " B o - diag(c” (z;(v))e; (x)
and

oD (28)

i—1 _
cW=ga

= > widiag(e’ (Z0)elx).

Jetl,2}

A learning algorithm that can be employed with respect to
a quasi-D'TNN, such as that shown in FIG. 9, is similar to that
presented above. A difference is that for the projection layers
in the quasi-DTNN, the gradients become as follows:

elx) = e diaglo” (K201, (29)
D 30

5 = Vel G0

oD (3B

dl =el(v),

and

e x) = Z erf(x). (32)

Jjetl,2}

With reference now to FIGS. 10 and 11, various exemplary
methodologies are illustrated and described. While the meth-
odologies are described as being a series of acts that are
performed in a sequence, it is to be understood that the meth-
odologies are not limited by the order of the sequence. For
instance, some acts may occur in a different order than what
is described herein. In addition, an act may occur concur-
rently with another act. Furthermore, in some instances, not
all acts may be required to implement a methodology
described herein.
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Moreover, the acts described herein may be computer-
executable instructions that can be implemented by one or
more processors and/or stored on a computer-readable
medium or media. The computer-executable instructions may
include a routine, a sub-routine, programs, a thread of execu-
tion, and/or the like. Still further, results of acts of the meth-
odologies may be stored in a computer-readable medium,
displayed on a display device, and/or the like. The computer-
readable medium may be any suitable computer-readable
storage device, such as memory, hard drive, CD, DVD, flash
drive, or the like. As used herein, the term “computer-read-
able medium” is not intended to encompass a propagated
signal.

Turning now solely to FIG. 10, an exemplary methodology
1000 that facilitates assigning a label to a sample provided by
auser is illustrated. The methodology 1000 starts at 1002, and
at 1004, the sample is received from a user at a computer
implemented recognition system.

At 1006, a label is assigned to the sample through employ-
ment of a computer-implemented DTNN, wherein the DTNN
comprises a plurality of stacked layers, and wherein the plu-
rality of stacked layers comprise a plurality of hidden layers
that include a projection layer and a tensor layer. The projec-
tion layer comprises a plurality of subspaces, wherein each
subspace comprises a respective, potentially nonlinear, pro-
jection of input data to the projection layer. Therefore, a first
subspace in the projection layer comprises a first projection of
input data to the projection layer, a second subspace in the
projection layer comprises a second projection of input data
to the projection layer, and so on. The tensor layer is config-
ured to receive projections from the respective subspaces,
execute a mathematical operation over such projections to
generate an output vector of values that maps to an immedi-
ately adjacent layer in the DTNN. The methodology 1000
completes at 1008.

Now referring to FIG. 11, an exemplary methodology 1100
that facilitates combining projections in a DTNN is illus-
trated. The methodology 1100 starts at 1102, and at 1104
input data to a projection layer is received (e.g., in the form of
a vector). At 1106, the input data is projected into respective
different projections, wherein such projections are nonlinear.
At 1108, the different projections are provided to different
respective subspaces of hidden units in the projection layer.

At 1110, output data from each of the subspaces in the
projection layer is received at a tensor layer in the DTNN, and
the output data is effectively combined for mapping to an
immediately adjacent layer in the DTNN. The methodology
1100 completes at 1112.

Now referring to FIG. 12, a high-level illustration of an
exemplary computing device 1200 that can be used in accor-
dance with the systems and methodologies disclosed herein is
illustrated. For instance, the computing device 1200 may be
used in a system that supports a computer-implemented rec-
ognition system. In another example, at least a portion of the
computing device 1200 may be used in a system that supports
learning parameters of a DTNN or a quasi-DTNN. The com-
puting device 1200 includes at least one processor 1202 that
executes instructions that are stored in a memory 1204. The
memory 1204 may be or include RAM, ROM, EEPROM,
Flash memory, or other suitable memory. The instructions
may be, for instance, instructions for implementing function-
ality described as being carried out by one or more compo-
nents discussed above or instructions for implementing one or
more of the methods described above. The processor 1202
may access the memory 1204 by way of a system bus 1206. In
addition to storing executable instructions, the memory 1204
may also store training data, retained input samples, etc.
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The computing device 1200 additionally includes a data
store 1208 that is accessible by the processor 1202 by way of
the system bus 1206. The data store may be or include any
suitable computer-readable storage, including a hard disk,
memory, etc. The data store 1208 may include executable
instructions, training data, weights for synapses between lay-
ersina DTNN, etc. The computing device 1200 also includes
an input interface 1210 that allows external devices to com-
municate with the computing device 1200. For instance, the
input interface 1210 may be used to receive instructions from
an external computer device, from a user, etc. The computing
device 1200 also includes an output interface 1212 that inter-
faces the computing device 1200 with one or more external
devices. For example, the computing device 1200 may dis-
play text, images, etc. by way of the output interface 1212.

Additionally, while illustrated as a single system, it is to be
understood that the computing device 1200 may be a distrib-
uted system. Thus, for instance, several devices may be in
communication by way of a network connection and may
collectively perform tasks described as being performed by
the computing device 1200.

It is noted that several examples have been provided for
purposes of explanation. These examples are not to be con-
strued as limiting the hereto-appended claims. Additionally, it
may be recognized that the examples provided herein may be
permutated while still falling under the scope of the claims.

What is claimed is:

1. A method, comprising:

at a recognition system, receiving a sample; and

assigning a label to the sample through employment of a

computer-implemented deep tensor neural network, the

deep tensor neural network comprising a plurality of
layers, the plurality of layers comprising:

a plurality of hidden layers that comprise a projection
layer and a tensor layer, each hidden layer in the
plurality of hidden layers at least one of:

receives data output from another immediately adjacent
hidden layer in the plurality of hidden layers; or

outputs data to another immediately adjacent hidden
layer in the plurality of hidden layers;

the projection layer comprising a plurality of subspaces,
each subspace in the plurality of subspaces compris-
ing respective hidden units, and wherein each sub-
space is provided with a respective projection of input
data from a first immediately adjacent layer in the
deep tensor neural network, wherein projections pro-
vided to respective subspaces are nonlinear projec-
tions of the input data, and wherein the tensor layer
receives respective output data from each subspace in
the plurality of subspaces and generates an output
vector for provision to a second immediately adjacent
layer in the deep tensor neural network, the output
vector being based at least in part upon the respective
output data from subspaces in the projection layer.

2. The method of claim 1, wherein the second immediately
adjacent layer is a second projection layer.

3. The method of claim 1, wherein a sigmoid function is
applied to at least one projection of the input data.

4. The method of claim 1, wherein the sample is one of a
voice sample or a handwriting sample.

5. The method of claim 1, wherein the plurality of hidden
layers comprise a plurality of projection layers and a plurality
of'tensor layers.

6. The method of claim 1, further comprising learning
weights between hidden layers in the deep neural network
through backpropagation.
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7. The method of claim 1, wherein the label assigned to the
sample is one of a word, a phone, or a senone.

8. The method of claim 1, wherein the first immediately
adjacent layer and the second immediately adjacent layer are
hidden layers in the deep tensor neural network.

9. The method of claim 1, wherein the tensor layer is
converted into a conventional layer by converting a weight
tensor in the tensor layer to a weight matrix, the weight matrix
defining the synapses’ connection strengths between the pro-
jection layer and the second immediately adjacent layer in the
deep tensor neural network.

10. The method of claim 1 configured for execution in a
mobile computing device.

11. The method of claim 10, wherein the mobile computing
device is one of a mobile telephone or a tablet computing
device.

12. A computing apparatus, comprising:

at least one processor; and

memory storing instructions that, when executed by the at

least one processor, cause the at least one processor to

perform acts comprising:

receiving a sample from a user;

providing the sample to an input layer of a deep tensor
neural network, the deep tensor neural network com-
prises a plurality of hidden layers, wherein a hidden
layer in the plurality of hidden layers receives data
output by another immediately adjacent hidden layer
in the plurality of hidden layers, the plurality of hid-
den layers comprising a plurality of projection layers
and a plurality of tensor layers, wherein each projec-
tion layer comprises at least two subspaces of hidden
units that are provided with respective nonlinear pro-
jections of input data received from a first immedi-
ately adjacent layer in the deep tensor neural network,
and wherein each tensor layer receives respective out-
put data from each subspace in an immediately adja-
cent projection layer and generates a respective output
vector for receipt at a second immediately adjacent
layer in the deep tensor neural network based at least
in part upon the output data received from each of the
subspaces; and

assigning a label to the sample based upon the output
data received from each of the subspaces.

13. The computing apparatus of claim 12 being a mobile
computing device.
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14. The computing apparatus of claim 13, wherein the
mobile computing device is one of a mobile telephone or a
tablet computing device.

15. The computing apparatus of claim 12, wherein a sig-
moid function is employed to generate at least one nonlinear
projection in the nonlinear projections.

16. The computing apparatus of claim 12, wherein the
sample is an utterance spoken by the user, and wherein the
label is indicative of at least one word in the spoken utterance.

17. The computing apparatus of claim 12, wherein the
respective projections are provided to the respective sub-
spaces based at least in part upon respective sets of weighted
synapses.

18. The computing apparatus of claim 12, wherein weights
of parameters of the deep tensor neural network are learned
by way of a backpropagation algorithm.

19. A computer-readable hardware storage device com-
prising instructions that, when executed by a processor, cause
the processor to perform acts comprising:

receiving, by way of a microphone, a spoken utterance

from an individual; and

utilizing a deep tensor neural network to assign a label to at

least a portion of the spoken utterance, the label being
indicative of at least one word in the spoken utterance,
and wherein the deep neural network comprises a plu-
rality of hidden layers, wherein a hidden layer in the
plurality of hidden layers outputs data that is received by
another immediately adjacent hidden layer in the plural-
ity of hidden layers, the plurality of hidden layers com-
prising a plurality of projection layers and a plurality of
tensor layers, wherein each projection layer is coupled to
a respective tensor layer, wherein each projection layer
comprises at least two subspaces of hidden units that are
provided with respective nonlinear projections of input
data received from a first immediately adjacent layer in
the deep tensor neural network, and wherein each tensor
layer maps at least two output vectors generated by the at
least two subspaces of hidden units into output data for
provision to a second immediately adjacent layer in the
deep tensor neural network.

20. The computer-readable hardware storage device of
claim 19, wherein the label assigned to the spoken utterance
is a disambiguated word in the spoken utterance.
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